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What do we like to do here: 
The method of images is a powerful technique in electrostatics 

for computing the electric potential in special systems involving 

grounded conductors and charges.   This topic is typically studied 

in upper-level undergraduate electromagnetism (such as in our 

PHY 371).   However, within this category of electrostatics 

problems,  only the simplest examples are worked out in 

electromagnetism textbooks, so it would be interesting to test 

our courage to extend the method beyond the simplest cases. 

We take up this task in this poster, first review the basics and 

a simple example,  and then we take our first step in the 

direction of extension (our minimal extension).  In the next set 
of posters, we will consider more non-trivial extensions.  

Can we extend the method of images in 

electrostatics to non-trivial cases? 
Amir Fariborz 

 June 4, 2023 
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A side note: 
In undergraduate physics courses, we typically  deal with 

solvable systems.   Needless to say, some of these systems can get 

quite complicated and nontrivial to analyze, but they are, in 

principle, solvable (or at least their framework is known).   

However, in the forefront of the contemporary theoretical physics, 

there are systems that, within the current state of knowledge, are 

not exactly solvable and/or their frameworks are not yet fully 

understood.   Nevertheless, over the past several decades, there have 

been major attempts in tackling unsolved problems by studying 

their theories in useful limits that result in connections to other 

theories.  The word “duality” is typically used when two theories 

converge in certain limits or under special conditions. Interplays 

between such different theories have provided new insights.  For 

example, connections between quantum theory of gravity 

(expressed by string theory) and the quantum field theories (such 

as those used for description of elementary particles), have resulted 

in many interesting investigations. 

When we study the method of images in electrostatics, we find 

that two completely different systems have exactly the same 

physical properties (within a certain region of space).  I like to 

think of these two systems as being the “dual” 

of each other, and this, in my mind,  somehow resembles the notion 

of duality just mentioned,  but  within a classical context.  The 

difference here is that the duality is between two systems studied 

within the same theory, but still is a type of duality.  
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Let’s first refresh our memory a bit:  
 

If we bring a charged object (like a charged rod made of, for 

example, hard rubber or glass which are the type of rods we use 

in lab) close to a neutral and isolated conducting sphere, the 

charges on the sphere separate from each other and we have 

something like shown in Fig. 1. This phenomenon is known as 

induction.  

 

 

 

 

 

 

Fig. 1:   Induction in an isolated conducting sphere. 
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  Now, if we ground the conducting sphere some of the  charges 

on the sphere (on the opposite side of the rod) get neutralized 

by  the ground and we end up with something like what is 

shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

Since the sphere is connected to the ground the potential on 

the sphere is at the same potential of the Earth which is 

conveniently taken to be zero. 

 

Is it easy to perform this experiment? 
Despite being a phenomenon that is easily understandable, its 

experimental observation is tricky.  The reason is that   many 

factors interfere with this experiment, such as many sources 

of static charge that are present in the lab or on the clothes 

of the experimenter.   Do we remember these issues in  

PHY 202 L?  Well, this is what we did: 

 

Fig. 2:   Induction in a grounded conducting sphere. 
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The typical equipment for measuring static charge is consist 

of a Faraday cage connected to an electrometer as shown in 

Fig. 3.  We perform this experiment in our PHY 102L and 

PHY 202L.   Using a special tool for collecting charge, we 

collect charge samples from different parts of the aluminum 

sphere and enter  them into the inner cage and read the 

numbers displayed by the electrometer which tell us the sign 

of the samples as well as,  qualitatively,   the amount of 

the charge in each sample.    

 

However, practically, these readings are not always consistent 

and stable.  Therefore, while the idea of this experiment is so 

simple, its performance is not always that easy due to different 

sources of charge contamination and interference with 

surrounding.   

 

 

 

 

 

Fig. 3:   Faraday cage connected 
to an electrometer used in 

measurement of static charge. 
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  How about theoretical calculation?        
Can we theoretically calculate the charge distribution on 

the aluminum sphere?  As we will see next,   the 

theoretical calculation is also not that trivial either, and 

depending on the geometry of the charged object that we 

bring near the grounded sphere, the solution can be quite 

elaborate. 

 

To develop a method for theoretically modeling the charge 

distribution on the aluminum sphere of Fig. 1 and 2,  as 

our first step, we can start from an oversimplified 

situation in which we only have one point charge in front 

of the sphere.  Once we understand this oversimplified 

case, we can use its formulation as a basis for more involved 

charged distributions, such as, ultimately, a distribution 

that closely resembles the charged rod of Fig. 1 & 2.  

 

Fortunately, the point charge case is treated in all upper 

division electromagnetism textbooks, such as the 

“Introduction to Electrodynamics,”  by D.J. Griffiths.  The 

set up and notation is shown in Fig. 4. 
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Now, is it easy to find the electric potential everywhere 

in the system  of Fig. 4 (obviously we mean outside the 

sphere)?   At first, one may think that the answer is yes 

because there is only one point charge in this system.   

But,  this is NOT correct, and here is why: 

Note that, due to induction, a charge distribution 

accumulates on the surface of the conducting grounded 

sphere, but,  a priori,  we don’t know this distribution!  

In other words, to find the electric potential, we need this 

charge distribution, and to find the charge distribution we 

need to know the electric potential, therefore, we seem 

to be dealing with a classic chicken and egg problem! 

 

 

Fig. 4:   A point charge in front of a grounded conducting 
sphere 

 

 



 

© 2023,  A. FARIBORZ.   DO NOT DISTRIBUTE. 
 
 

Pa
ge

8 

 

  What comes to our rescue out of this apparent gridlock is 

the mathematical foundation of electrostatics.  For this 

system we need to solve the Poisson partial differential 

equation: 

𝛁𝛁𝟐𝟐𝑽𝑽 = −
𝝆𝝆
𝝐𝝐𝟎𝟎
 

This PDE rests on several Uniqueness Theorems that specify 

situations in which the solution of this PDE is unique.  For 

example, one of these theorems states that if the charge 

distribution as well as the electric potential is specified in a 

system (which is the case here), then the solution to this 

PDE is uniquely determined.   

 

What is so special about this uniqueness of solution? It 

authorizes us to come up with a solution by any means, 

including guessing a solution, because if we can find one solution, 

then it has to be the ONLY one! 

 

A method that helps us figure out the solution is known as 

the method of images.   This method kind of resembles the 

optical image of objects in flat or curved mirrors.   Effectively, 

this method shows that the  system consist of a point charge 

in front of a grounded conductor can be traded with another 

system in which the effect of the conductor is described by an 

“image charge.”   Let us examine this for our system (learn 

this technique in PHY 371). 

 

 

(1)  
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According to this method,  we find that, amazingly, the electric 

potential for every point outside (or on) the aluminum sphere 

is the same as the electric potential in the very simple two 

point charge system (the original charge 𝒒𝒒  and its image charge 

𝒒𝒒′) depicted in Fig. 5 for distances  

𝒓𝒓 ≥ 𝑹𝑹‼! 

 

I like to call these two completely different systems “Dual 

Systems” because they have exactly the same physics outside 
the sphere! 

 

Fig. 5:   Dual electrostatics systems  
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  As given in the figure,  the exact characteristics of the dual 

system of two point charges (the original charge + its image 

charge) are: 

                          𝒒𝒒′ = −𝑹𝑹
𝒂𝒂
𝒒𝒒   

 𝒃𝒃 =
𝑹𝑹𝟐𝟐

𝒂𝒂
 

Now that we know the magical solution, we can calculate 

anything we like (such as the charge distribution on the surface 

of the conductor that we were initially so puzzled about),  

using the exact solution given by the dual system.  The electric 

potential anywhere in either system is determined by:  

                𝑽𝑽(𝒓𝒓) = 𝟏𝟏
𝟒𝟒𝟒𝟒𝝐𝝐𝟎𝟎

� 𝒒𝒒
�𝒓𝒓−𝒓𝒓𝒒𝒒�

+ 𝒒𝒒′
�𝒓𝒓−𝒓𝒓𝒒𝒒′�

� 

so simple, AND, exact!  

Then, using this exact solution, the “mystery” charge-density 

can be calculated as:                                       

𝝈𝝈 = −𝝐𝝐𝟎𝟎
𝝏𝝏𝑽𝑽(𝒓𝒓)
𝝏𝝏𝒓𝒓

|𝒓𝒓=𝑹𝑹  

 𝝈𝝈 =
𝒒𝒒

𝟒𝟒𝟒𝟒𝑹𝑹
�𝑹𝑹𝟐𝟐 − 𝒂𝒂𝟐𝟐��𝑹𝑹𝟐𝟐 + 𝒂𝒂𝟐𝟐 − 𝟐𝟐𝑹𝑹𝒂𝒂 𝒄𝒄𝒄𝒄𝒄𝒄 𝜽𝜽�−

𝟑𝟑
𝟐𝟐   

 

This is already an amazing solution, however, this formulation 

is only for a single point charge in front of a grounded 

conducting sphere.   It is interesting to try to see  if we can 

extend this method to our original case of a charged rod in 

front of a grounded conducting sphere!  

 

 

 

 

(2)  

(3)  

(4) 

(5) 

(6) 
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  How do we tackle the rod case? 
Equipped with the solution for the simplest case of a point 

charge, we can now think about non-trivial extensions (that 

go beyond the level of textbooks).  

In this poster we discuss the simplest case of an extended  

charged object,  i.e.  a uniformly charged rod along the 

radial direction shown in Fig. 6.   We can connect this case 

to the previous discussion of a point charge case, by 

considering an infinitesimal portion of the charge 𝒅𝒅𝒒𝒒 on this 

rod, which, according to previous case, has an image 𝒅𝒅𝒒𝒒′ 

inside the sphere as shown.  The magnitude and location of 

the image can be worked out from Eqs. (2) and (3).  

Clearly, this immediately suggests that the image of this 

rod is a rod inside the sphere which turns out to be true 

(but, the general case is not so easy, and it can be shown 

that the shape of the image, in general,  has nothing to 

do with the shape of the charged object -- see next 

posters!).  Our parametrization is defined in Fig. 7.    

 
 

 

 

Fig. 6:   A charged rod in front of a grounded 
conducting sphere 
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Then, we can extend Eqs. (2) and (3) to infinitesimal 

portions of the rod and write:                      

                       𝒅𝒅𝒒𝒒′ = − 𝑹𝑹
𝒙𝒙′
𝒅𝒅𝒒𝒒           

 𝒙𝒙′′ =
𝑹𝑹𝟐𝟐

𝒙𝒙′
 

These two equations give a few interesting results. First, we 

note that (7) implies that even though this rod is uniformly 

charged, its image (another rod inside the sphere) is 

nonuniformly charged!  

 

The charge density can be worked out as:  

𝝀𝝀′(𝒙𝒙′′)𝒅𝒅𝒙𝒙′′ = −
𝑹𝑹
𝒙𝒙′
𝝀𝝀(𝒙𝒙′)𝒅𝒅𝒙𝒙′ 

 

Note that 𝒙𝒙′ and 𝒙𝒙′′ are both measured from the center of 

the sphere, therefore, 𝒅𝒅𝒙𝒙′ should have the same sign as 𝒅𝒅𝒙𝒙′′, 

hence:  
 

 

 

Fig. 7:   Parametrization of the system of  charged 
rod in front of a grounded conducting sphere 

 

(7) 

(8) 

(9) 
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  𝝀𝝀′(𝒙𝒙′′) = −
𝑹𝑹
𝒙𝒙′
𝝀𝝀(𝒙𝒙′) �

𝒅𝒅𝒙𝒙′

𝒅𝒅𝒙𝒙′′
� =  −

𝑹𝑹
𝑹𝑹𝟐𝟐
𝒙𝒙′′

𝝀𝝀 �
𝑹𝑹𝟐𝟐

𝒙𝒙′′
�

 𝑹𝑹𝟐𝟐

𝒙𝒙′′𝟐𝟐
 = −

𝑹𝑹
𝒙𝒙′′

  𝝀𝝀 �
𝑹𝑹
𝒙𝒙′′
� 

 

(do you really see something like this in a calculus course!!!).  

For our uniformly charged rod of length L, density 𝝀𝝀𝟎𝟎, Eq (10) 

gives: 

𝝀𝝀′(𝒙𝒙′′) = −
𝑹𝑹
𝒙𝒙′′

𝝀𝝀𝟎𝟎 = −
𝑹𝑹
𝑹𝑹𝟐𝟐
𝒙𝒙′

𝝀𝝀𝟎𝟎 = −
𝝀𝝀𝟎𝟎
𝑹𝑹
𝒙𝒙′  

 

Secondly, using Eq. (8) we can calculate the length of the 

image: 
 

 

𝑳𝑳′ = 𝒙𝒙𝑹𝑹′′ − 𝒙𝒙𝑳𝑳′′ =
𝑹𝑹𝟐𝟐

𝒙𝒙𝑳𝑳′
−
𝑹𝑹𝟐𝟐

𝒙𝒙𝑹𝑹′
=

𝑹𝑹𝟐𝟐

𝒙𝒙𝑳𝑳′ 𝒙𝒙𝑹𝑹′
(𝒙𝒙𝑹𝑹′ − 𝒙𝒙𝑳𝑳′ ) =

𝑹𝑹𝟐𝟐

𝒙𝒙𝑳𝑳′ 𝒙𝒙𝑹𝑹′
𝑳𝑳 

 

which implies than not only does 𝑳𝑳′depend on 𝑳𝑳 , it also 

depends on the location of the rod! 

 

Thirdly, we can calculate the total image charge: 

𝒒𝒒′ = � 𝝀𝝀′(𝒙𝒙′′)𝒅𝒅𝒙𝒙′′ =
𝒙𝒙𝑹𝑹
′′

𝒙𝒙𝑳𝑳
′′

− 𝑹𝑹𝝀𝝀𝟎𝟎 �
𝒅𝒅𝒙𝒙′′

𝒙𝒙′′
= −𝑹𝑹𝝀𝝀𝟎𝟎 𝒍𝒍𝒍𝒍 �

𝒙𝒙𝑹𝑹′′

𝒙𝒙𝒍𝒍′′
�   

𝒙𝒙𝑹𝑹
′′

𝒙𝒙𝑳𝑳
′′

 

 

Let’s test this solution!  How about pushing the rod to the 
point-charge  limit and see if (13) recovers (2)? 

(10) 

(11) 

(12) 

(13) 
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We can test our formula to see if it recovers the point charge 

case. Using 𝑳𝑳′ = 𝒙𝒙𝑹𝑹′′ −  𝒙𝒙𝑳𝑳′′ ,  and that in the point charge limit:  

𝒙𝒙𝑹𝑹′ → 𝒙𝒙𝑳𝑳′ = 𝒙𝒙′, 𝒙𝒙𝑹𝑹′′ → 𝒙𝒙𝑳𝑳′′ = 𝒙𝒙′′ , we have: 

𝒒𝒒′ = −𝑹𝑹𝝀𝝀𝟎𝟎 𝒍𝒍𝒍𝒍 �
𝒙𝒙𝑹𝑹′′

𝒙𝒙𝒍𝒍′′
� = −𝑹𝑹𝝀𝝀𝟎𝟎 𝒍𝒍𝒍𝒍 �

𝒙𝒙𝑳𝑳′′ + 𝑳𝑳′

𝒙𝒙𝑳𝑳′′
� = −𝑹𝑹𝝀𝝀𝟎𝟎 𝒍𝒍𝒍𝒍 �𝟏𝟏 +

𝑳𝑳′

𝒙𝒙𝑳𝑳′′
� 

Then: 

 𝐥𝐥𝐥𝐥𝐥𝐥
𝑳𝑳′→𝟎𝟎 

𝒒𝒒′ = −𝑹𝑹𝝀𝝀𝟎𝟎  𝑳𝑳
′

𝒙𝒙′′
= −𝑹𝑹𝝀𝝀𝟎𝟎  

𝑹𝑹𝟐𝟐

𝒙𝒙′𝟐𝟐
𝑳𝑳

𝑹𝑹𝟐𝟐

𝒙𝒙′

= −𝑹𝑹𝝀𝝀𝟎𝟎𝑳𝑳
𝒙𝒙′

= − 𝑹𝑹
𝒙𝒙′

 𝒒𝒒        

With the confidence that Eq. (15) gives us, we are now ready 

to go further.   We can calculate the potential at an arbitrary 

field point 𝒓𝒓�⃗  as shown in Fig. 8.  

 

 

 

 

 

 

 

This potential is produced by the rod and its image: 

𝑽𝑽(𝒓𝒓) =
𝟏𝟏

𝟒𝟒𝟒𝟒𝝐𝝐𝟎𝟎
��

𝝀𝝀′
�𝒓𝒓�⃗ − 𝒓𝒓�⃗ 𝒒𝒒′�

𝒅𝒅𝒙𝒙′′ +
𝒙𝒙𝑹𝑹
′′

𝒙𝒙𝑳𝑳
′′

�
𝝀𝝀𝟎𝟎

�𝒓𝒓�⃗ − 𝒓𝒓�⃗ 𝒒𝒒�
𝒅𝒅𝒙𝒙′

𝒙𝒙𝑹𝑹
′

𝒙𝒙𝑳𝑳
′

� 

(14) 

(15) 

 

Fig. 8:   Electric potential at point 𝒓𝒓�⃗  produced by this system. 

(16) 
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𝑽𝑽(𝒓𝒓) =
𝟏𝟏

𝟒𝟒𝟒𝟒𝝐𝝐𝟎𝟎
��

−𝝀𝝀𝟎𝟎𝑹𝑹
𝒙𝒙′′

√𝒓𝒓𝟐𝟐 + 𝒙𝒙′′𝟐𝟐 − 𝟐𝟐𝒓𝒓𝒙𝒙′′𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽
𝒅𝒅𝒙𝒙′′   

𝒙𝒙𝑹𝑹
′′

𝒙𝒙𝑳𝑳
′′

+�
𝝀𝝀𝟎𝟎

√𝒓𝒓𝟐𝟐 + 𝒙𝒙′𝟐𝟐 − 𝟐𝟐𝒓𝒓𝒙𝒙′𝒄𝒄𝒄𝒄𝒄𝒄𝜽𝜽
𝒅𝒅𝒙𝒙′

𝒙𝒙𝑹𝑹
′

𝒙𝒙𝑳𝑳
′

� 

Using this we can then calculate the charge density on the 

surface of the sphere: 

𝝈𝝈 = −𝝐𝝐𝟎𝟎
𝝏𝝏𝑽𝑽(𝒓𝒓)
𝝏𝝏𝒓𝒓

�
𝒓𝒓=𝑹𝑹 

  

and consequently the total surface charge on the conductor: 

𝒒𝒒′ = � 𝝈𝝈 𝟐𝟐𝟒𝟒 𝒄𝒄𝒔𝒔𝒍𝒍𝜽𝜽 𝒅𝒅𝜽𝜽
𝟒𝟒

𝟎𝟎
 

 

Let us check to see if (19) agrees with (13). Integrals (17) and 

(19) are rather lengthy, so we consider a semi-numeric approach.   

With:  𝑹𝑹 = 𝟏𝟏, 𝒙𝒙𝑳𝑳′ = 𝟐𝟐, 𝒙𝒙𝑹𝑹′ = 𝟑𝟑 and 𝝀𝝀𝟎𝟎 = 𝟏𝟏,  Maple is used to compute 

the integrals (17) and (19) – the Maple code is given in the 

Appendix.   

 

The charge density is a very complicated function of 𝜽𝜽 as displayed 

in the next page.   The plot of charge density vs 𝜽𝜽 is also given in 

next page (Fig. 9).  

  

 

 

(17) 

(18) 

(19) 
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The charge density is: 

 

 

 

 

and its plot vs 𝜽𝜽 is given in Fig. 9 below. 

 

 

 

 

 

 

 

 

The same Maple code computes the total surface charge and 

finds: 

𝒒𝒒′ = −𝒍𝒍𝒍𝒍�
𝟑𝟑
𝟐𝟐
� 

in complete agreement with Eq. (13)!   

 

 

 

 

Fig. 9:  Charge density on the 
surface of the sphere vs 𝜽𝜽. 

(20) 
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Now, let us compare the charge density produced by the rod 

with the charge density produced by a point charge.   For 

numerical comparison,  we take the total charge on the rod 

𝒒𝒒 equal to the total charge of the point charge placed at 

𝒙𝒙′ = 𝟐𝟐.𝟎𝟎 (left end of the rof), 𝒙𝒙′ = 𝟐𝟐.𝟓𝟓 (middle of the rod), 

𝒙𝒙′ = 𝟑𝟑.𝟎𝟎 (right end of the rod) – see Fig. 10 (left). In Eq. 

(6) we substitute 𝒒𝒒 = 𝟏𝟏,𝑹𝑹 = 𝟏𝟏, 𝒂𝒂 = 𝟐𝟐.𝟓𝟓, and plot the density 

given by (6) vs 𝜽𝜽 as shown in Fig. 10(right). 

 

 

 

 

 

 

 

 

Fig. 10 raises a question:  Is there any point that we can 

place the point charge so that the charge density produced 

by the rod becomes identical (or very close) to that produced 

by the point charge?   We can calculate the location by noting 

that if the densities are to be the same, the total image 

charge should be the same too! This means, using Eqs. (2) 
and (20): 

              

Fig. 10:   Comparing the rod and  point charge  systems (left).  The rod has the same 
total charge as each of the point charges.   The right fig. compares  the surface 
charge density on the sphere produced by the rod  (black curve) with the same 
quantity produced   by each of the point charges (the fig. colors on the right are 
produced by charges with the same color in the left fig.).                                                           
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𝒒𝒒′ = −𝒍𝒍𝒍𝒍�
𝟑𝟑
𝟐𝟐
� = −

𝑹𝑹𝒒𝒒
𝒂𝒂

 

which, within our choice of units we find: 

𝒂𝒂 =
𝟏𝟏

𝒍𝒍𝒍𝒍 �𝟑𝟑𝟐𝟐�
= 𝟐𝟐.𝟒𝟒𝟒𝟒𝟒𝟒𝟑𝟑𝟎𝟎𝟑𝟑𝟒𝟒𝟒𝟒𝟐𝟐 

With this input the charge density produced by this point 

charge is compared with the rod again in Fig. 11 

 

 

 

 

 

 

 

 

Note that in this case the total charge on the rod, and of 

the point charge are the same.  Also the total image charges 

are the same.   Fig. 11 shows some difference in density near 

𝜽𝜽 = 𝟎𝟎, but this is compensated by a tiny difference between 

the densities for larger values of  𝜽𝜽 which cannot immediately 

seen in the figure. In other words, the black curve is lower 

than magenta near 𝜽𝜽 = 𝟎𝟎 but it is higher for larger values of 

𝜽𝜽, resulting in identical “total” image charges (if you look 
closely, you might be able to see this in the fig. as well). 

 

Fig. 11:   Comparing the surface charge density produced by a charged 
rod (black) and  produced by a point charge (magenta).    The total 
image charge is the same in either case.  

(21) 

(22) 
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What we considered here was the simplest case of an extended 

charged object and its fascinating calculus.  In the next poster, 

we will work out the theory for the  general case and then 

we will consider several nontrivial cases, such as, for example, 

a charged vertical rod, a charged slanted rod, a charged ring, 

a charged slanted ring, a charged plate, etc.   

 

Finally,  it is hard  not to notice the beauty of the underlying 

calculus here, and even more so when we will consider the 

more general cases.  This is why the best way of learning  

calculus is to study physics.   No surprise here, of course, 

because calculus was born in physics,  and physics will teach 

us the best calculus, forever!   
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Appendix:  MAPLE Code 
 

with(plots): 

# Basic Inputs: 

R := 1: 

xp_L := 2: 

xp_R := 3: 

lambda0 := 1: 

VL :=  

1/(4*Pi*epsilon0)*lambda0* 

int( 

    1/sqrt(r^2 + xp^2 - 2*r*xp*cos(theta)),  

    xp = xp_L .. xp_R): 

xpp_L :=  R^2/xp_R: 

xpp_R :=  R^2/xp_L: 

VLp :=  

-1/(4*Pi*epsilon0)*R*lambda0* 

int( 

    1/(xpp*sqrt(r^2 + xpp^2 - 2*r*xpp*cos(theta))),  

    xpp = xpp_L .. xpp_R): 

V_total := simplify(VL + VLp): 

V_total_diff:= -epsilon0*simplify(diff(V_total, r)): 

sigma_rod := simplify(subs(r=R, V_total_diff)); 

qp_rod := simplify(int(sigma_rod*2*Pi*sin(theta), theta = 0 .. Pi)); 

#  Plots:  

P1 := plot(sigma_rod, theta = 0 .. Pi, color = black, thickness = 5): 

sigma_point_25 := 1/(4*Pi)*(1 - 2.5^2)*(1 + 2.5^2 - 2*2.5*cos(theta))^(-3/2): 

P2 := plot(sigma_point_25, theta = 0 .. Pi, color = blue, thickness = 5): 

sigma_point_20 := 1/(4*Pi)*(1 - 2^2)*(1 + 2^2 - 2*2*cos(theta))^(-3/2): 

P3 := plot(sigma_point_20, theta = 0 .. Pi, color = green, thickness = 5): 

sigma_point_30 := 1/(4*Pi)*(1 - 3^2)*(1 + 3^2 - 2*3*cos(theta))^(-3/2): 

P4 := plot(sigma_point_30, theta = 0 .. Pi, color = red, thickness = 5): 

display({P1, P2, P3, P4}); 

a_exact := evalf(1/ln(3/2)): 

sigma_point_exact := 1/(4*Pi)*(-a_exact^2 + 1)*(1 + a_exact^2 - 2*a_exact*cos(theta))^(-3/2): 

P5 := plot(sigma_point_exact, theta = 0 .. Pi, color = magenta, thickness = 5): 

display(P1, P5); 

 

 

 

 

 

 


