Nanobioscience - Courses

NNSE 521 Nano Drug Development & Biomanufacturing (3)
Nanotechnology Applications in Drug Development & Biomanufacturing introduces students to the use of nanotechnology in the discovery, production and use of therapeutics, which includes small molecules produced by chemical synthesis and nucleic acids, proteins, antibodies and vaccines produced by biomanufacturing.  Students will be introduced to basic concepts in the drug development pipeline, genetic, molecular and cell biology, toxicology and pharmacology topics, and specific nanotechnology concepts and applications in these areas. Students will also be introduced to federal regulatory (FDA) requirements pertinent to drug development and biomanufacturing, as well as commercialization aspects that influence whether a drug makes it to the market. Students will also perform engineering design projects detailing how different nanotechnology applications have or could improve current specific drugs on the market.

NNSE 641 Principles of Sensors: Chemical, Biological and Physical (3)
Fundamentals of sensor design, transduction techniques, and tailored coatings for chemical, biological and physical sensing applications, sensitivity and selectivity concerns, array design and pattern recognition algorithms.

NNSE 647 Cellular Signal and NanoBio Appl (3)
Cells respond to environmental cues based on their interaction with the extracellular matrix and cell surface receptors that transmit environmental signals into cellular outcomes. This course will cover prominent cell signaling networks that are activated by nanomaterials, as well as those signaling networks harnessed in nanotechnology applications, such as the integration of neural networks, and receptors into synthetic devices for biosensing/biomonitoring. Students will gain a thorough understanding of the principles of cellular signaling, including second messengers; signal transduction cascades; receptors and signaling in health and disease (e.g. oncogenes; the immune system). Every module will emphasize particular applications of these signaling networks in Nanobiotechnology, with a focus on specific methods and advancements in the field. This course ensures that graduate students gain a strong knowledge base on the underlying biological principles used in the development of bio-based nanotechnology and are able to apply these to their own research.

NNSE 658 Biomedical Nanotechnology (3)
This course will introduce in-depth knowledge of biomedical nanotechnology and nanomedicine. Emphasis will be on the applications of nanotechnology in stem cell research, tissue engineering, drug delivery, gene therapy, cancer therapy, diagnostics, imaging, and nanotoxicity. Students with satisfactory completion of the course will have a demonstrated knowledge of how to apply nanotechnology to address biological and biomedical problems. Prerequisites: NNSE 506 Principles of Nanobiology/NNSE 508 Interfacial Properties of Nanobio Systems and permission of instructor.

NNSE 681 Seminar in Nanobiology (1)
This course introduces students to concepts of hypothesis-driven research and the range of experimental strategies applicable towards research objectives in nanobiology, through critical reading and discussion of current scientific literature and evaluation of ongoing research by peers.  Recent, high-quality research articles in the field of nanobiology, as well as students’ own research data, protocols, and perspectives, will serve as the basis for weekly discussions. Students will participate in choosing articles for discussion and will learn how to critically review both the written articles and the experimental research procedures. In addition to exploring the field of nanobiology, this course is intended to help students improve their scientific communication skills. Students will be evaluated based upon participation in discussion sessions, as well as through one in-class oral presentation. Prerequisites: Open to students with permission of instructor; also open to superior undergraduate seniors with the approval of their advisers and the written consent of their department chairs.

NNSE 785 Neuroscience Nanotechnology (3)
A one-semester course in nanotechnology applications in neuroscience with a comprehensive overview of nanotechnology applied to neuroscience. Appropriate for both Nanoscale Science and Nanoscale Engineering students with an interest in the nanobioscience track, biomedicine, computational artificial neural networks and neural-machine interfaces. Neuroscience specific topics will include temporal development of the central and peripheral nervous systems, hippocampus and basal ganglia, neuron structure and function, default mode networks, electrophysiology, neural stem cells. Additional topics covered will include: nanotechnology applications, to neurodegenerative disease, injury/repair mechanisms, and psychiatric diseases, and nanotechnology enabled central nervous system (CNS) therapeutics, neural probes and neural prosthetics, computational neuroscience and artificial neural networks.

NNSE 670 Transmission Electron Microscopy (4)
Basics of nanoscale analysis using specialized transmission electron microscope instrumentation such as scanning TEM, HRTEM, cryo-TEM and TEM-STM. Course emphasizes practical training in the operation of advanced TEM instrumentation, stressing hands-on laboratory sessions and a semester-long project involving a specimen of the student's choosing (a task related to the student's research program in nanotechnology is strongly encouraged). Suitable project topics include: specialized sample preparation for nanostructures (FIB & tripod polishing); amorphous & nanocrystalline materials; imaging and spectroscopy of quantum wells and quantum dots; interface nanostructure and segregation. Prerequisites: Permission of instructor.

NNSE 605 Integrated Circuit Manufacturing I (3)
Covers basic tools and principles of chip construction. Describes structural and electrical differences between logic, dram, flash, etc. types of devices. Covers in detail how a chip is constructed and some of the problem areas encountered. Fundamental modules of ion implantation, pecvd, Lpcvd, Rie behavior, control of profiles, diffusion, Lithography, yield control tactics, deposition, oxidation kinetics, as well as future changes in the technology over the next 10 years will be covered. Future changes will be understood in terms of factors that drive speed of Microprocessors.

NNSE 513 - Economic Principles of Nanotechnology Management (3)
The principles of economics greatly impact the development of new technologies. Students are introduced to concepts such as markets, production, and consumer demand in order to understand how firms, customers, and government make decisions that will influence the creation, diffusion, and adoption of nanotechnologies. Students will also learn tools of strategic decision making critical to the nanotechnology development. Prerequisite: Consent of Instructor.

NNSE 525 - Innovation and Commercialization of Emerging Technologies (2)
Legal aspects of innovation and technology transfer of emerging technologies, with an emphasis on nanotechnology and biotechnology. Topics include the fundamentals of intellectual property law, with a particular focus on the statutory and regulatory frameworks for technology transfer; nanoengineering basics and the law affecting nanotechnologies; customer discovery in the university setting; intellectual property strategy and licensing frameworks, with both startups and established industry partners; artificial intelligence: law, applications, and ethics; the law, science and ethics of the human genome and bioinformatics; intellectual property in the life sciences, from seed investment to Initial Public Offering; and the role of the state government in innovation and economic development.
 

READY TO GET STARTED?

Request More Information

Detailed information, brochures and forms can be mailed to you upon request.

REQUEST NOW

Let's Start The Process     

Complete and submit your application to SUNY Polytechnic Institute.            

APPLY NOW