Serge Oktyabrsky
Degrees
- Ph.D. (Solid State Physics) from P.N.Lebedev Physics Institute, Moscow, 1988,
- M.S. (Physics and Engineering) from Moscow Physical-Technical Institute, 1980.
Research areas
- Compound semiconductors
- Photonics
- Electronics
- Molecular beam epitaxy
- Semiconductor materials and nanostructures
Description of research
Professor Oktyabrsky's research group focuses on the physics and technology of quantum confined structures and microcavity photonic devices. More specifically, this includes:
- Novel photonic and optoelectronic semiconductor structures with quantum confinement. Numerous types of semiconductor devices utilize effect of quantum confinement, when the energy of localized electrons increases in a small (down to a few nanometers) quantum wells. Oktyabrysky's group is fabricating various quantum confined structures, such as superlattices, quantum dots (QDs), coupled quantum well - dots, using molecular beam epitaxy and explore their electronic and optical properties, with the ultimate purpose of building better devices.
- Design, fabrication, and characterization of semiconductor electronic and photonic devices. Oktyabrysky's group is engaged in these activities in the lab to build laser diodes, vertical cavity surface-emitting lasers (VCSELs), LEDs, photodetectors with superior performance parameters. For example, Oktyabrysky's group recently developed a technology for shape-engineering of quantum dots resulted in high electron-hole coupling. A laser build using these QDs had unsurpassed thermal stability with maximum lasing temperature of 219 0C and an extremely high characteristic temperature of 380 K. In addition, they have found that the QD structures can withstand two orders of magnitude higher defect density than quantum wells typically used in lasers. That result directly in enhanced laser lifetime.
- Application of all-of-the-above in chip-level optical interconnects. As silicon integrated circuits are getting faster, the wiring with the rest of the world becomes a real bottleneck. It is expected that optical interconnects will substitute copper wires within the next 10-15 years. Oktyabrysky's group aims at the architectures, circuits, components and integration technologies for chip-level optical signal input/output. For example, the group has developed a novel approach called "oxidation lift-off technology" for heterogeneous integration of GaAs-based components on silicon electronics and demonstrated a VCSEL operation on Si.
Recent selected publications
V. Tokranov, M. Yakimov, J. van Eisden, and S. Oktyabrsky
All-Epitaxial VCSELs with Tunnel QW-QD InGaAs-InAs Gain Medium
Proc. SPIE, v. 6481, 2007
M. H. Zhang, M. Oye, B. Cobb, F. Zhu, H. S. Kim, I. J. Ok, J. Hurst, S. Lewis, A. Holmes, J. C. Lee, S. Koveshnikov, W. Tsai, M. Yakimov, V. Torkanov, and S. Oktyabrsky
Importance of controlling oxygen incorporation into HfO2/Si/n-GaAs gate stacks
J. Appl. Phys. v. 101, pp. 34103-341, 2007
J. Zhu, S. Oktyabrsky, and M. B. Huang
Ion channeling investigation of proton-irradiation-induced in-Ga atomic intermixing in self-assembled InAs/GaAs quantum dot structures
J.l of Appl. Phys., v. 100, pp. 104312-1-6, 2006
S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J.C. Lee
High-k gate stack on GaAs and InGaAs using in situ passivation with amorphous silicon
Materials Sci. Eng. B, 135 272-276 (2006)
V. Tokranov, M. Yakimov, J. van Eisden, and S. Oktyabrsky
Tunnel quantum well-on-dots InGaAs-InAs high-gain medium for laser diodes
Proc. of SPIE, 6129, 612908-16 (2006)
S. Oktyabrsky, V. Tokranov, G. Agnello, J. van Eisden, and M. Yakimov
Nanoengineering approaches to self-assembled InAs quantum dot laser medium
J. Electron Materials, 35(5) 822-833 (2006)
S. Oktyabrsky, M. Yakimov, J. Van Eisden, and V. Tokranov
Self-Assembled Quantum Dots: Engineered Gain Medium
SSDM - 2006 (International Conference on Solid State Devices and Materials), Extended Abstract, B5-1, Yokohama, Japan, September 2006 (Invited)
M. Yakimov, V. Tokranov, G. Agnello, J. van Eisden, and Serge Oktyabrsky
In situ monitoring of formation of InAs quantum dots and overgrowth by GaAs or AlAs
J. Vac. Sci. Tech., B 23(3), 1221-1225 (2005)
S. Oktyabrsky, M. Lamberti, V. Tokranov, G. Agnello and M. Yakimov
Room-temperature defect tolerance of band-engineered InAs quantum dot heterostructures
J. Appl. Phys. 98, 053512 (2005)
S. Koveshnikov and W. Tsai, I. Ok and J.C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky
Metal-Oxide-Semiconductor Capacitors on GaAs with High-k Gate Oxide and Amorphous Silicon Interface Passivation Layer
Appl. Phys. Lett., 88, 022106-8 (2006)
Alain E. Kaloyeros, Serge Oktyabrsky
Prospects and challenges for chip-level optical interconnects
Solid State Technology, June 1 (2005)
S. Oktyabrsky, A. Katsnelson, V. Tokranov, R. Todt, and M. Yakimov
Oxidation Lift-off Method for Layer Transfer of GaAs/AlAs-based structures
Appl. Phys. Lett. 85(1), 151-153 (2004)
A. Mintairov, Tang Yan, J. Merz, V. Tokranov, S. Oktyabrsky
Single dot near-field spectroscopy for photonic crystal microcavities
Phys. Status Solidi C, no.2, 2005. p. 845-9
S. Oktyabrsky, M. Yakimov, V. Tokranov, J. van Eisden, A. Katsnelson
Oxidation lift-off technology
Proc. SPIE Vol. 5730, p. 149-157 (2005)
A.M. Mintairov, K. Sun, J. L. Merz, C. Li, A. S. Vlasov, D. A. Vinokurov, O. V. Kovalenkov, V. Tokranov, and S. Oktyabrsky
Nanoindentation and near-field spectroscopy of single semiconductor quantum dots
Phys. Rev. B 69, 155306 (2004)
V. Tokranov, M. Yakimov, A. Katsnelson, K. Dovidenko, M. Lamberti, and S. Oktyabrsky
Nanoengineered InAs Quantum Dots with Stabilized Electronic Properties
in Quantum Confined Semiconductor Nanostructures, MRS Proc., v. 737 (2003) 185-200
V. Tokranov, M. Yakimov, A. Katsnelson, M. Lamberti, and S. Oktyabrsky
Enhanced Thermal Stability of Laser Diodes with Shape-Engineered Quantum Dot Medium
Appl. Phys. Lett., v. 83(5), 833-835 (2003)
A.M. Mintairov, P. A. Blagnov, O. V. Kovalenkov, C. Li, J. L. Merz, S. Oktyabrsky, K. Sun, V. Tokranov, A. S. Vlasov, D. A. Vinokurov
Local Strain Effects in Near-Field Spectra of Single Semiconductor Quantum Dots
in Quantum Confined Semiconductor Nanostructures, MRS Proc., v. 737 (2003) 59-64
V Joshkin, K. Dovidenko, S. Oktyabrsky,D. Saulys, T. Kuech, L. McCaughan
New methods for fabricating patterned lithium niobate for photonic applications
Journal of Crystal Growth, 259 (2003) 273
S. Oktyabrsky, I. Khmyrova, V. Ryzhii
Characteristics of integrated QWIP-HBT-LED up-converter
IEEE Transactions on Electron Devices, 50(12) (2003) 2378 - 2387
J. Narayan and S. Oktyabrsky
Formation of misfit dislocations in thin film heterostructures
J. Appl. Phys.,. 92, pp. 7122-7, 2002
V.Tokranov, M. Yakimov, A. Katsnelson, K. Dovidenko, R. Todt, and S. Oktyabrsky
InAs quantum dots in AlAs/GaAs short period superlattices: structure, optical characteristics and laser diodes
In: Progress in Semiconductor Materials for Optoelectronic Applications. Mater. Res. Soc. Proc., 692 (2002), 135-140
M.Yakimov, K.Dovidenko, V.Tokranov, A. Katsnelson and S. Oktyabrsky
InAs Quantum Dots Formation, Evolution and Evaporation on GaAs and AlAs Surfaces
In: Current Issues in Heteroepitaxial Growth - Stress Relaxation and Self-Assembly. Mater. Res. Soc. Proc., 696 (2002)
Serge Oktyabrsky, James Castracane, and Alain Kaloyeros
Emerging Technologies for Chip-Level Optical Interconnects Proc.
SPIE, 4652 (2002), pp. 213-224
S. Oktyabrsky
Defects in Zinc Blende and Wurtzite Phases in III-Nitride Heterostriuctures
In: The Encyclopedia of Materials: Science and Technology. Elsivier Science, 2001
A. Kvit and S. Oktyabrsky
Defects in CdTe and Related Compounds
In: The Encyclopedia of Materials: Science and Technology. Elsivier Science, 2001
Patents
S. Oktyabrsky, I. Khmyrova, V. Ryzhii
Infrared Focal Plane Optoelectronic Up-Converter
Patent pending (US provisional # 60/504,782, Sept. 26, 2003)
S. Oktyabrsky M. Yakimov
Oxidation Lift-off Method
Patent pending